Data Pipeline Issues | Blue Frog Docs

Data Pipeline Issues

Understanding and fixing ETL/data pipeline problems and implementing monitoring

Data Pipeline Issues

What This Means

Data pipelines are systems that extract, transform, and load (ETL) data from various sources to destinations for analysis and reporting. Pipeline issues can cause:

  • Missing or incomplete data in analytics
  • Data staleness and delayed reporting
  • Duplicate or corrupted records
  • Failed data transformations
  • Performance degradation in data processing
  • Data loss during transfers
  • Inconsistent data across systems

Common pipeline components include data ingestion, transformation, validation, enrichment, and loading into data warehouses or analytics platforms.

How to Diagnose

Monitor Pipeline Metrics

// Track pipeline execution metrics
const pipelineMetrics = {
  startTime: Date.now(),
  recordsProcessed: 0,
  recordsFailed: 0,
  errors: []
};

async function runPipeline(data) {
  try {
    for (const record of data) {
      try {
        await processRecord(record);
        pipelineMetrics.recordsProcessed++;
      } catch (error) {
        pipelineMetrics.recordsFailed++;
        pipelineMetrics.errors.push({
          record,
          error: error.message,
          timestamp: new Date()
        });
      }
    }
  } finally {
    pipelineMetrics.duration = Date.now() - pipelineMetrics.startTime;
    logMetrics(pipelineMetrics);
  }
}

Check Data Quality

  • Compare record counts between source and destination
  • Verify data freshness (timestamp of last update)
  • Check for null values in required fields
  • Validate data types and formats
  • Monitor for duplicates

Pipeline Health Checks

async function healthCheck() {
  const checks = {
    sourceConnection: await testSourceConnection(),
    destinationConnection: await testDestinationConnection(),
    lastRunTime: await getLastSuccessfulRun(),
    recordCount: await validateRecordCount(),
    dataFreshness: await checkDataFreshness()
  };

  const isHealthy = Object.values(checks).every(check => check.status === 'ok');

  if (!isHealthy) {
    alertOnPipelineFailure(checks);
  }

  return checks;
}

Common Indicators

  • Data gaps or missing time periods
  • Sudden drops in record volume
  • Increasing error rates in logs
  • Long-running or stuck jobs
  • Memory or disk space issues

General Fixes

  1. Implement idempotent operations - Make pipeline re-runnable safely

    async function upsertRecord(record) {
      // Use upsert instead of insert to handle duplicates
      await db.query(`
        INSERT INTO analytics (id, data, updated_at)
        VALUES ($1, $2, NOW())
        ON CONFLICT (id)
        DO UPDATE SET data = EXCLUDED.data, updated_at = NOW()
      `, [record.id, record.data]);
    }
    
  2. Add retry logic with backoff - Handle transient failures

    async function retryOperation(operation, maxRetries = 3) {
      for (let attempt = 1; attempt <= maxRetries; attempt++) {
        try {
          return await operation();
        } catch (error) {
          if (attempt === maxRetries) throw error;
    
          const delay = Math.pow(2, attempt) * 1000;
          console.warn(`Attempt ${attempt} failed, retrying in ${delay}ms`);
          await new Promise(resolve => setTimeout(resolve, delay));
        }
      }
    }
    
  3. Use batch processing - Process records in batches for efficiency

    async function processBatch(records, batchSize = 100) {
      for (let i = 0; i < records.length; i += batchSize) {
        const batch = records.slice(i, i + batchSize);
        await Promise.all(batch.map(record => processRecord(record)));
    
        // Yield to prevent blocking
        await new Promise(resolve => setImmediate(resolve));
      }
    }
    
  4. Implement data validation - Catch issues early

    function validateRecord(record) {
      const errors = [];
    
      if (!record.id) errors.push('Missing required field: id');
      if (!record.timestamp) errors.push('Missing required field: timestamp');
      if (typeof record.value !== 'number') errors.push('Invalid type for value');
    
      if (errors.length > 0) {
        throw new ValidationError(errors.join(', '));
      }
    
      return true;
    }
    
  5. Add monitoring and alerting - Detect issues quickly

    async function monitorPipeline() {
      const metrics = await getPipelineMetrics();
    
      // Alert on high error rate
      if (metrics.errorRate > 0.05) {
        sendAlert('High error rate in pipeline', metrics);
      }
    
      // Alert on data staleness
      const hoursSinceLastRun = (Date.now() - metrics.lastRunTime) / 3600000;
      if (hoursSinceLastRun > 2) {
        sendAlert('Pipeline has not run in 2 hours', metrics);
      }
    
      // Alert on low throughput
      if (metrics.recordsPerMinute < expectedThroughput * 0.5) {
        sendAlert('Pipeline throughput below threshold', metrics);
      }
    }
    
  6. Use dead letter queues - Capture failed records for later processing

    async function processWithDLQ(record) {
      try {
        await processRecord(record);
      } catch (error) {
        // Send to dead letter queue for manual review
        await deadLetterQueue.send({
          record,
          error: error.message,
          timestamp: new Date(),
          retryCount: record.retryCount || 0
        });
      }
    }
    
  7. Implement incremental loading - Process only new/changed data

    async function incrementalLoad(lastRunTimestamp) {
      // Only fetch records updated since last run
      const newRecords = await source.query(`
        SELECT * FROM events
        WHERE updated_at > $1
        ORDER BY updated_at ASC
      `, [lastRunTimestamp]);
    
      await processRecords(newRecords);
    
      // Update watermark
      await saveLastRunTimestamp(Date.now());
    }
    
  8. Use checkpointing - Resume from last successful point

    async function processWithCheckpoints(records) {
      let checkpoint = await loadCheckpoint();
    
      for (let i = checkpoint; i < records.length; i++) {
        await processRecord(records[i]);
    
        // Save checkpoint every 100 records
        if (i % 100 === 0) {
          await saveCheckpoint(i);
        }
      }
    
      await clearCheckpoint();
    }
    
  9. Partition large datasets - Process in parallel

    async function processPartitions(data, partitions = 4) {
      const partitionSize = Math.ceil(data.length / partitions);
    
      const promises = Array.from({ length: partitions }, (_, i) => {
        const start = i * partitionSize;
        const end = start + partitionSize;
        const partition = data.slice(start, end);
    
        return processPartition(partition, i);
      });
    
      await Promise.all(promises);
    }
    

Platform-Specific Guides

Platform Guide
Apache Airflow Pipeline Monitoring
AWS Glue ETL Best Practices
Google Dataflow Pipeline Development
dbt Data Testing
Fivetran Data Pipeline Monitoring

Further Reading

// SYS.FOOTER