Integration Inventory
Google Marketing Platform Integrations
Google Analytics integrates natively with the broader Google Marketing Platform ecosystem:
- Automatic conversion tracking and attribution
- Smart Bidding optimization using GA4 audiences
- Cross-platform campaign performance analysis
- Enhanced conversion tracking with first-party data
- Organic search query data integration
- Landing page performance metrics
- Search appearance insights
- Core Web Vitals reporting
- Centralized tag deployment and management
- Advanced event tracking configuration
- Server-side tagging capabilities
- Built-in GA4 template tags
Display & Video 360
- Campaign performance measurement
- Floodlight counter integration
- Audience sharing for programmatic campaigns
- Cross-device attribution reporting
Campaign Manager 360
- Ad serving metrics integration
- Conversion attribution analysis
- Creative performance tracking
- View-through conversion measurement
Search Ads 360
- Bidding strategy optimization
- Multi-engine campaign analytics
- Budget allocation insights
- Conversion funnel analysis
Data & Analytics Integrations
BigQuery Export (GA4 only)
- Raw event-level data streaming
- SQL-based custom analysis
- Machine learning model training
- Unlimited data retention
Looker Studio (formerly Data Studio)
- Drag-and-drop dashboard builder
- Real-time data visualization
- Custom report templates
- Cross-platform data blending
- Mobile app analytics integration
- In-app event tracking
- User property synchronization
- Crash reporting correlation
Google Cloud Platform
- Cloud Functions for data processing
- Cloud Storage for data archival
- Vertex AI for predictive analytics
- Pub/Sub for real-time event streaming
Third-Party Platform Integrations
CRM & Marketing Automation
- Salesforce - Lead attribution and ROI tracking
- HubSpot - Marketing automation workflow triggers
- Marketo - Campaign performance analysis
- ActiveCampaign - Email engagement correlation
E-commerce Platforms
- Shopify - Enhanced e-commerce tracking
- WooCommerce - Product performance analytics
- Magento - Customer journey analysis
- BigCommerce - Transaction data integration
Customer Data Platforms
- Segment - Unified customer data collection
- mParticle - Cross-platform event orchestration
- Tealium - Tag management and audience activation
- Lytics - Customer segmentation and personalization
Data Warehouses
- Snowflake - Data consolidation and analysis
- Amazon Redshift - Enterprise data warehousing
- Azure Synapse - Microsoft cloud analytics
- Databricks - Lakehouse architecture integration
API Access & Custom Integrations
Google Analytics Reporting API v4 (Universal Analytics)
- Custom dashboard and report generation
- Automated data extraction workflows
- Multi-dimensional query capabilities
- Programmatic access to historical data
Google Analytics Data API (GA4)
- Real-time and historical data access
- Event-level reporting capabilities
- Funnel exploration queries
- Custom dimension and metric retrieval
Google Analytics Admin API
- Programmatic account configuration
- Property and data stream management
- User permission automation
- Conversion event setup
Measurement Protocol
- Server-side event tracking
- Offline conversion import
- IoT device data collection
- Call center interaction tracking
Licensing & Plan Requirements
GA4 Free vs. GA4 360
| Feature | GA4 Free | GA4 360 |
|---|---|---|
| Data collection | 10M events/month | 1B events/month |
| BigQuery export | Daily batch | Streaming + batch |
| Custom dimensions | 50 | 125 |
| Custom metrics | 50 | 125 |
| Audiences | 100 | 400 |
| SLA & support | Community | 99.9% SLA + dedicated support |
| Advanced analysis | Limited | Unsampled reports, advanced features |
| Data retention | 14 months | 50 months |
Universal Analytics (Sunset July 1, 2023)
- Standard: Free tier with basic features
- 360: Enterprise tier with SLA, unsampled data, and advanced features
Implementation Playbooks
Google Ads Integration Setup
Link Google Ads and Google Analytics for comprehensive campaign tracking:
Setup Steps
- Sign in to Google Analytics
- Navigate to Admin > Google Ads Linking
- Click "Link" and select your Google Ads account
- Enable auto-tagging in Google Ads
- Configure link settings (import conversions, remarketing)
- Save and verify data flow
Conversion Import Configuration
// GA4 event configuration for Google Ads conversion import
gtag('event', 'purchase', {
transaction_id: 'T12345',
value: 129.99,
currency: 'USD',
tax: 10.99,
shipping: 5.99,
items: [{
item_id: 'SKU_12345',
item_name: 'Product Name',
item_category: 'Category',
price: 113.01,
quantity: 1
}]
});
// Mark as primary conversion in GA4
// Admin > Events > Mark as conversion
Audience Sharing
- In GA4, navigate to Admin > Audience Definitions
- Create audience with desired criteria
- Enable "Google Ads" as destination
- Configure audience settings (membership duration, eligibility)
- Wait 24-48 hours for audience to populate
- Access audience in Google Ads for campaign targeting
QA Verification
- Verify auto-tagging is enabled (check for
gclidparameter) - Confirm conversions appear in Google Ads within 24 hours
- Validate conversion values match between platforms
- Check audience size updates in Google Ads interface
- Test remarketing campaigns with GA4 audiences
BigQuery Export Configuration
Stream GA4 event data to BigQuery for advanced analysis:
Initial Setup
- Create Google Cloud Platform project
- Enable BigQuery API
- In GA4 Admin, navigate to BigQuery Linking
- Select project and dataset location
- Choose export frequency (Daily, Streaming, or both)
- Configure export settings and save
Export Options
- Daily export: Batch processing once per day, no additional cost
- Streaming export: Real-time events, charged per GB ingested
- Include advertising identifiers: Optional PII considerations
- Export events: All events vs. specific events only
Sample BigQuery Queries
-- Daily active users by traffic source
SELECT
traffic_source.source,
traffic_source.medium,
COUNT(DISTINCT user_pseudo_id) as daily_active_users
FROM
`project.dataset.events_*`
WHERE
_TABLE_SUFFIX = FORMAT_DATE('%Y%m%d', CURRENT_DATE())
GROUP BY
traffic_source.source,
traffic_source.medium
ORDER BY
daily_active_users DESC;
-- E-commerce conversion funnel
WITH funnel_events AS (
SELECT
user_pseudo_id,
COUNTIF(event_name = 'view_item') as viewed_items,
COUNTIF(event_name = 'add_to_cart') as added_to_cart,
COUNTIF(event_name = 'begin_checkout') as began_checkout,
COUNTIF(event_name = 'purchase') as purchases
FROM
`project.dataset.events_*`
WHERE
_TABLE_SUFFIX BETWEEN FORMAT_DATE('%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE())
GROUP BY
user_pseudo_id
)
SELECT
COUNTIF(viewed_items > 0) as step1_view_item,
COUNTIF(added_to_cart > 0) as step2_add_to_cart,
COUNTIF(began_checkout > 0) as step3_begin_checkout,
COUNTIF(purchases > 0) as step4_purchase,
ROUND(COUNTIF(added_to_cart > 0) / COUNTIF(viewed_items > 0) * 100, 2) as view_to_cart_rate,
ROUND(COUNTIF(purchases > 0) / COUNTIF(began_checkout > 0) * 100, 2) as checkout_to_purchase_rate
FROM
funnel_events;
-- Top landing pages with engagement metrics
SELECT
REGEXP_EXTRACT((SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'page_location'), r'([^?]+)') as landing_page,
COUNT(DISTINCT user_pseudo_id) as users,
AVG((SELECT value.int_value FROM UNNEST(event_params) WHERE key = 'engagement_time_msec')) / 1000 as avg_engagement_seconds,
COUNTIF(event_name = 'purchase') as conversions,
ROUND(COUNTIF(event_name = 'purchase') / COUNT(DISTINCT user_pseudo_id) * 100, 2) as conversion_rate
FROM
`project.dataset.events_*`
WHERE
_TABLE_SUFFIX = FORMAT_DATE('%Y%m%d', CURRENT_DATE())
AND event_name IN ('session_start', 'purchase')
GROUP BY
landing_page
ORDER BY
users DESC
LIMIT 25;
Cost Optimization
- Use table partitioning (
_TABLE_SUFFIX) to limit scanned data - Cluster tables by common query dimensions
- Set up scheduled queries for recurring reports
- Monitor BigQuery storage costs monthly
- Archive old data to Cloud Storage for cost savings
Salesforce Integration
Connect Google Analytics with Salesforce for closed-loop attribution:
Integration Methods
Native GA360 Connector (GA360 only)
- Direct data sharing with Salesforce
- Automated field mapping
- Bi-directional data sync
Third-Party Tools
- Salesforce Marketing Cloud integration
- Pardot connector for B2B tracking
- Custom ETL with Zapier or Integromat
Custom API Integration
- GA Reporting API + Salesforce API
- Server-side tracking with Measurement Protocol
- Cloud Functions for automated data sync
Implementation Example
# Python script for syncing GA4 leads to Salesforce
from google.analytics.data_v1beta import BetaAnalyticsDataClient
from simple_salesforce import Salesforce
import os
from datetime import datetime, timedelta
# Initialize clients
ga_client = BetaAnalyticsDataClient()
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_TOKEN')
)
# Fetch conversions from GA4
def get_ga4_conversions(property_id, start_date, end_date):
request = {
"property": f"properties/{property_id}",
"dimensions": [
{"name": "sessionSource"},
{"name": "sessionMedium"},
{"name": "sessionCampaignName"}
],
"metrics": [{"name": "conversions"}],
"date_ranges": [{"start_date": start_date, "end_date": end_date}],
"dimension_filter": {
"filter": {
"field_name": "eventName",
"string_filter": {"value": "generate_lead"}
}
}
}
response = ga_client.run_report(request)
return response
# Create leads in Salesforce
def create_sf_leads(conversions):
for row in conversions.rows:
lead_data = {
'FirstName': 'GA4',
'LastName': 'Lead',
'Company': 'Unknown',
'LeadSource': f"{row.dimension_values[0].value} / {row.dimension_values[1].value}",
'Description': f"Campaign: {row.dimension_values[2].value}"
}
sf.Lead.create(lead_data)
# Execute sync
yesterday = (datetime.now() - timedelta(1)).strftime('%Y-%m-%d')
conversions = get_ga4_conversions('123456789', yesterday, yesterday)
create_sf_leads(conversions)
Data Activation
Audience Building & Activation
GA4 audiences enable sophisticated user segmentation and cross-platform activation:
Advanced Audience Configuration
// Predictive audience: Likely 7-day purchasers
// Conditions in GA4 UI:
// - Predicted purchase probability > 50%
// - Last active within 7 days
// - Device category = mobile
// Custom audience: High-value cart abandoners
// Conditions:
// - Event: add_to_cart (within last 30 days)
// - Event value > 100
// - NOT Event: purchase (within last 30 days)
// - Session count > 3
Multi-Platform Activation
- Google Ads - Remarketing and similar audiences
- Display & Video 360 - Programmatic display campaigns
- Search Ads 360 - Search remarketing lists
- YouTube - Video remarketing campaigns
- Google Optimize - A/B testing and personalization
- Firebase - Mobile app messaging and targeting
Conversion Modeling & Attribution
Enhanced Conversions Setup
Improve conversion tracking accuracy with first-party data:
// Enhanced conversion tracking with hashed user data
gtag('set', 'user_data', {
"email": "user@example.com",
"phone_number": "+15551234567",
"address": {
"first_name": "John",
"last_name": "Doe",
"street": "123 Main St",
"city": "New York",
"region": "NY",
"postal_code": "10001",
"country": "US"
}
});
gtag('event', 'conversion', {
'send_to': 'AW-123456789/AbCdEfGhIjKlMnOpQrSt',
'value': 1.0,
'currency': 'USD'
});
Data-Driven Attribution
- Enable in GA4 Admin > Attribution Settings
- Requires minimum data thresholds (400 conversions per conversion event)
- Distributes credit across touchpoints using machine learning
- Compare with other models (last-click, first-click, linear, time-decay)
Real-Time Personalization
Google Optimize Integration
<!-- Google Optimize anti-flicker snippet -->
<style>.async-hide { opacity: 0 !important} </style>
<script>
(function(a,s,y,n,c,h,i,d,e){s.className+=' '+y;h.start=1*new Date;
h.end=i=function(){s.className=s.className.replace(RegExp(' ?'+y),'')};
(a[n]=a[n]||[]).hide=h;setTimeout(function(){i();h.end=null},c);h.timeout=c;
})(window,document.documentElement,'async-hide','dataLayer',4000,
{'GTM-XXXXXX':true});
</script>
<!-- GA4 + Optimize integration -->
<script>
gtag('config', 'G-XXXXXXXXXX', {
'optimize_id': 'OPT-XXXXXXX'
});
</script>
Personalization Use Cases
- Homepage hero variations based on traffic source
- Product recommendations based on browsing history
- Pricing display optimization by user segment
- Form field variations for conversion optimization
Refresh Cadences & Data Sync
Platform Sync Schedules
| Integration | Sync Frequency | Latency | Notes |
|---|---|---|---|
| Google Ads | Real-time | < 1 hour | Conversion import may take 3-9 hours |
| BigQuery Streaming | Real-time | < 5 minutes | Additional costs apply |
| BigQuery Daily | Batch | Daily at ~9 AM | Previous day's data |
| Audiences | Real-time | 24-48 hours | Initial population, then real-time updates |
| Search Console | Daily | 2-3 days | Historical data delay |
| Salesforce (custom) | Scheduled | Configurable | Depends on ETL implementation |
Team Ownership
- Marketing Team - Audience creation, campaign optimization, conversion tracking
- Analytics Team - Custom reporting, BigQuery analysis, data quality monitoring
- Engineering Team - API integrations, server-side tracking, technical implementation
- Data Team - Data warehouse integration, ETL pipeline maintenance, data governance
Compliance & Security
GDPR & Privacy Compliance
Consent Management
// Google Consent Mode v2 implementation
gtag('consent', 'default', {
'ad_storage': 'denied',
'ad_user_data': 'denied',
'ad_personalization': 'denied',
'analytics_storage': 'denied'
});
// Update consent based on user choice
function updateConsent(consent) {
gtag('consent', 'update', {
'ad_storage': consent.advertising ? 'granted' : 'denied',
'ad_user_data': consent.advertising ? 'granted' : 'denied',
'ad_personalization': consent.advertising ? 'granted' : 'denied',
'analytics_storage': consent.analytics ? 'granted' : 'denied'
});
}
Data Retention & Deletion
- Configure data retention periods in GA4 Admin (2-14 months)
- Enable user deletion requests via Measurement Protocol
- Implement right-to-be-forgotten workflows
- Document data processing agreements with Google
Data Processing Agreements
Required Documentation
- Google Ads Data Processing Terms
- Google Analytics Data Protection Terms
- BigQuery Data Processing Amendment
- Third-party integration vendor agreements
Security Assessments
- Annual vendor risk assessment for Google services
- Review data transfer mechanisms (Privacy Shield alternatives)
- Audit access controls and user permissions
- Document data flows in privacy impact assessments
Access Control Best Practices
User Permission Hierarchy
- Administrator - Full account access, user management
- Editor - Configuration changes, no user management
- Analyst - View and share reports, create audiences
- Viewer - Read-only access to reports
Service Account Management
# Create service account for API access
gcloud iam service-accounts create ga4-reporting \
--display-name="GA4 Reporting Service Account"
# Grant Analytics Viewer role
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:ga4-reporting@PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/analyticsviewer"
# Create and download key
gcloud iam service-accounts keys create ~/ga4-key.json \
--iam-account=ga4-reporting@PROJECT_ID.iam.gserviceaccount.com
Monitoring & Alerting
Integration Health Checks
- Google Ads conversion import status monitoring
- BigQuery export job success/failure alerts
- API quota usage tracking and alerts
- Data quality anomaly detection
Compliance Monitoring
- Automated PII scanning in event parameters
- Consent mode implementation verification
- Data retention policy compliance checks
- Access log auditing and review
Backlog & Opportunities
High-Priority Integrations
Customer Data Platform Expansion
- Segment CDP - Unified customer data collection (Engineering: 2 weeks, High impact)
- Treasure Data - Enterprise CDP integration (Engineering: 4 weeks, Medium impact)
- ActionIQ - Composable CDP for enterprise (Engineering: 3 weeks, Medium impact)
Marketing Automation
- Braze - Multi-channel customer engagement (Engineering: 3 weeks, High impact)
- Iterable - Growth marketing platform (Engineering: 2 weeks, Medium impact)
- Customer.io - Behavioral email automation (Engineering: 2 weeks, Medium impact)
Advanced Analytics
- ThoughtSpot - AI-powered analytics search (Engineering: 2 weeks, Medium impact)
- Amplitude - Product analytics integration (Engineering: 3 weeks, High impact)
- Mixpanel - User behavior analysis (Engineering: 3 weeks, High impact)
Technical Improvements
Infrastructure Enhancements
- Implement server-side GTM for improved data accuracy
- Build unified measurement framework across web and app
- Create automated testing suite for tracking implementations
- Develop GA4 migration validation tools
Data Quality
- Automated data quality monitoring and alerting
- PII detection and prevention systems
- Cross-platform data reconciliation workflows
- Enhanced bot and spam traffic filtering
Emerging Opportunities
Privacy-First Measurement
- First-party data strategy expansion
- Server-side tracking migration roadmap
- Cookieless measurement experimentation
- Privacy Sandbox API integration planning
AI & Machine Learning
- Predictive analytics model refinement
- Custom ML models using BigQuery ML
- Automated insight generation
- Anomaly detection and alerting